Aplicaciones del filtrado adaptivo utilizando el algoritmo Least Mean Square
نویسندگان
چکیده
منابع مشابه
Transcripción fonética de acrónimos en castellano utilizando el algoritmo C4.5
This work presents an automatic acronyms transcription system in order to increase the synthetic speech quality of text-to-speech systems, in the presence of acronyms in the input text. The acronyms transcription is conducted by using a decision tree (C4.5 algorithm). The work presents the results obtained for different algorithm configurations, validating its performance with respect to other ...
متن کاملRecomendaciones contextuales basadas en el enfoque de post-filtrado
Resumen. Hoy en día, los sistemas de recomendación son utilizados en diferentes tipos de aplicaciones. Un sistema de recomendación de restaurantes proporciona recomendaciones considerando los gustos y preferencias del usuario con el propósito de facilitar al usuario la selección de restaurantes que posteriormente visitará. El objetivo de este trabajo es desarrollar una aplicación para hacer rec...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملMean square convergence analysis for kernel least mean square algorithm
In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Paradigmas
سال: 2016
ISSN: 2220-2056,2519-7266
DOI: 10.31381/paradigmas.v4i1.562